Comparative evaluation of commercially available wound gels in human skin ex vivo reveals major differences in immune response modulating effects

  • Dąbrowska, AK et al. The relationship between skin function, barrier properties and body-dependent factors. Skin. Res. Technology. 24165-174 (2018).

    Article
    PubMed

    Google Scholar

  • Nestlé, FO, Di Meglio, P., Quin, J.-Z. & Nickoloff, BJ Immune sentinels of the skin in health and disease. Nat. Rev. Immunol. 9679–691 (2009).

    Article
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Tamari, M., Ver Heul, AM & Kim, BS Immunosensation: neuroimmune dialogue in the skin. Ann. Rev. Immunol. 39369-393 (2021).

    Article
    CASE
    PubMed

    Google Scholar

  • Takeo, M., Lee, W. & Ito, M. Wound healing and skin regeneration. Cold Spring Harb. Perspective. Med. 5a023267 (2015).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Richardson, R. et al. Adult zebrafish as a model system for skin wound healing research. J. Investig. Dermatol. 1331655-1665 (2013).

    Article
    CASE
    PubMed

    Google Scholar

  • Reinke, JM & Sorg, H. Wound repair and regeneration. EUR. Surg. Res. 4935–43 (2012).

    Article
    CASE
    PubMed

    Google Scholar

  • Eming, SA, Krieg, T. & Davidson, JM Inflammation in wound repair: molecular and cellular mechanisms. J. Investig. Dermatol. 127514–525 (2007).

    Article
    CASE
    PubMed

    Google Scholar

  • Leung, A., Crombleholme, TM & Keswani, SG Fetal wound healing: Implications for minimal scar formation. Running. Notice. Pediatrician 24371–378 (2012).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Caley, MP, Martins, VLC & O’Toole, EA Metalloproteinases and wound healing. Adv. Wound care 4225-234 (2015).

    Article

    Google Scholar

  • Ulrich, D., Ulrich, F., Unglaub, F., Piatkowski, A. & Pallua, N. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with different types of scars and keloids. J.Plast. Rebuild Plastic surgery. 631015-1021 (2010).

    Article

    Google Scholar

  • auf dem Keller, U. & Sabino, F. Matrix metalloproteinases in impaired wound healing. Meet. Med. 21–8 (2015).

    Google Scholar

  • Support. et al. Healing applications of “smart” creams and hydrogels. Exp. Dermatol. 301218-1232 (2021).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Severing, AL, Rembe, JD, Koester, V. & Stuermer, EK Safety and efficacy profiles of different commercial solutions of sodium hypochlorite/hypochlorous acid (NaClO/HClO): antimicrobial efficacy, cytotoxic impact and physicochemical parameters in vitro. J. Antimicrobial. Chimimer. 74365–372 (2019).

    Article
    CASE
    PubMed

    Google Scholar

  • Hübner, NO, Siebert, J. & Kramer, A. Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Pharmacol skin. Physiol. 23244-258 (2010).

    Article
    PubMed

    Google Scholar

  • Koburger, T., Hübner, NO, Braun, M., Siebert, J. & Kramer, A. Standardized comparison of the antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and digluconate of chlorhexidine. J. Antimicrobial. Chimimer. 651712-1719 (2010).

    Article
    CASE
    PubMed

    Google Scholar

  • von Rheinbaben, F. & Wolff, MH Handbuch der viruswirksamen Desinfektionen (Springer, 2002). https://doi.org/10.1007/978-3-642-56394-2_13.

    Book

    Google Scholar

  • Sharpe, A. et al. Case studies: octenidine in the management of diabetic foot ulcers. Diabetes. J-foot 21192–197 (2018).

    Google Scholar

  • Matiasek, J. et al. An intra-individual comparison of surgical wounds shows that the octenidine-based hydrogel dressing improves the appearance of scars after abdominoplasty. Int. Hurt J. 15914–920 (2018).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Nikolic, N. et al. The antiseptic octenidine inhibits Langerhans cell activation and modulates cytokine expression upon superficial wounding with strip stripping. J. Immunol. Res. 201911. https://doi.org/10.1155/2019/5143635 (2019).

    Article
    CASE

    Google Scholar

  • Seizer, S. et al. The octenidine-based hydrogel exhibits anti-inflammatory and protease-inhibitory abilities in injured human skin. Science. representing 1132 (2021).

    Article
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Tajpara, P. et al. Epicutaneous administration of the pattern recognition receptor agonist polyinosinic-polycytidylic acid activates the MDA5/MAVS pathway in Langerhans cells. FASB J. 324132–4144 (2018).

    Article
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Gill, SE & Parks, WC Metalloproteinases and their inhibitors: regulators of wound healing. Int. J. Biochem. Cell Biol. 401334-1347 (2007).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Walsh, JG et al. Executioner caspase-3 and caspase-7 are functionally distinct proteases. proc. Natl. Acad. Science. UNITED STATES. 10512815–12819 (2008).

    Article
    ADS
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Hämmerle, G. & Strohal, R. Efficacy and cost-effectiveness of octenidine wound gel in the treatment of chronic venous leg ulcers compared with modern dressings. Int. Hurt J. 13182-188 (2016).

    Article
    PubMed

    Google Scholar

  • Alam, K., Edwards, J., Jeffery, S., Hunt, S. & Assadian, O. Safe, Effective, and Rapid: A New Treatment for Burns and Extensive Wounds: Clinical Advantages of Ophthalmic Wound Gel octenilin. Br. J. Nurs. 272–18 (2018).

    Google Scholar

  • Eisenbeiss, W. et al. Prospective, double-blind, randomized controlled trial evaluating the effect of an octenidine-based hydrogel on bacterial colonization and epithelialization of skin graft wounds in burn patients. Int. J. Burns trauma 271–79 (2012).

    Google Scholar

  • Pavlik, V. et al. Distribution of silver in chronic wounds and healing dynamics of chronic wounds treated with dressings containing silver and octenidine. FASB J. 351–13 (2021).

    Article

    Google Scholar

  • Pavlík, V., Sojka, M., Mazúrová, M. & Velebný, V. Dual roles of iodine, silver, chlorhexidine and octenidine as antimicrobial and antiprotease agents. PLOS ONE 14e0211055 (2019).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. The. 8S3 (2006).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Liechty, KW, Adzick, NS & Crombleholme, TM Decreased interleukin 6 (IL-6) production during repair of an unscarred human fetal wound. Cytokine 12671–676 (2000).

    Article
    CASE
    PubMed

    Google Scholar

  • Liechty, KW, Crombleholme, TM, Cass, DL, Martin, B. & Adzick, NS Decreased interleukin-8 (IL-8) production in fetal wound healing response. J. Surg. Res. 7780–84 (1998).

    Article
    CASE
    PubMed

    Google Scholar

  • Iocono, JA et al. Interleukin-8 levels and activity in delayed-healing human thermal wounds. Regeneration of wound repair. 8216-225 (2000).

    Article
    CASE
    PubMed

    Google Scholar

  • Lim, CP, Phan, TT, Lim, IJ & Cao, X. Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. J. Investig. Dermatol. 129851–861 (2009).

    Article
    CASE
    PubMed

    Google Scholar

  • Saxton, R. A. et al. Structure-based uncoupling of the pro- and anti-inflammatory functions of interleukin-10. Science 371eabc8433 (2021).

    Article
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • King, A., Balaji, S., Le, LD, Crombleholme, TM & Keswani, SG Regenerative wound healing: The role of interleukin-10. Adv. Wound care 3315–323 (2014).

    Article

    Google Scholar

  • Steen, EH et al. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv. Wound care 9184–198 (2020).

    Article

    Google Scholar

  • Wynn, TA Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4583–594 (2004).

    Article
    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Armour, A., Scott, PG & Tredget, EE Cellular and molecular pathology of HTS: basis of treatment. Regeneration of wound repair. 15S6–S17 (2007).

    Article
    PubMed

    Google Scholar

  • Martins, VL, Caley, M. & O’Toole, EA Matrix metalloproteinases and epidermal wound repair. Cell tissue Res. 351255-268 (2013).

    Article
    CASE
    PubMed

    Google Scholar

  • Shubin, AV, Demidyuk, IV, Komissarov, AA, Rafieva, LM & Kostrov, SV Cytoplasmic vacuolation in cell death and cell survival. Oncotarget seven55863–55889 (2016).

    Article
    PubMed
    PubMed Center

    Google Scholar

  • Patricia J. Callender